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At)stra('t

The analytic expression of the time evolution of the Reynolds stress

anisotropy tensor in all planar homogeneous flows is obtained by exact inle-

gration of the mo<leled differential Reynolds stress equations. The procedure

is based on results of tensor representation theory, is applicable for general

pressure-strain correlation tensors, and can a,cc<>unt for any additional t urbu-

lence anisotropy effects in('luded in the closure. An exl)lMt solution of lhe

resulting system of scalar ordinary differenlial equations is obtained for the

case of a linear pressure-strain correlalion tensor. The properties of this so-

lutioll are discussed, and the dynami(" I)ehavior of th(' Reynolds stresses is

studied, including limi! cycles and sensitivily to initial anisolrol)ies.

I. INTRODUCTION

The dynamical behavior of the Reynolds stresses in homogeneous flows is nlo(lele(l l)y a

tensor evolution equation, t)revious studies have focused on the fixed [)oints associated with

the equilibrium states of the Reynolds stresses for several homogeneous flows j 3 in order

to assess the stability of higher order models and the ability of these models to reach lhe

correct solution points. In recenl studies, such fixed points haw' been obtained analytically

tot" all planar homogeneous flows in both inertial and noninertial fi'ames as as,vml)tolic slates

of the evolution of the Reynolds stresses. 4 In the present paper, the time evolution of lhe

Reynolds stress anisolropy tensor is obtained analytically for all planar homogeneous flows.

The resulting explicit expression for the Reynolds stress anisotropy tensor is quite compact

and can t)e exl)ressed as ratios of sums of ext)onentials in time.

Such an analytical solution is obtained through a recasting of the l,ensor equation for

the Reynolds stress anisotropy into an equivalent sel of three scalar ordinary differential

equations in three scalar invariants by" using representation theory. This procedure can be

applied to the Reynolds stress model equations in which the pressure strain correlation ten-

sor is modeled in a general way, including quadratic or higher order l,erlllS, and additional

anisotrol)y effects can be illcorporated. The solution of the resulting set of ordinary (liiDl'en-

tim equations is o])tained for the case of a linear I)ressure-strain correlation tensor, wilh no



additional anisotropy effectsincluded. The presentexplicit nonequilibrium stresssolution
predicts stressanisotropiesthat arequite closeto the onesgiven by the modeledReynolds
stress anisotropy evolution equation over all times. The differencescan be attributed to

the assumption of a slow variation of the relative strain parameter that had to be made in

obtaining the explicit expression of the stress anisotropies. All the dynamic features of the

Reynolds stress evolution are captured by the explicit time solution, including limit cycles.

II. EVOLUTION OF REYNOLDS STRESS ANISOTROPY

Consider incompressible, homogeneous turbulent flow, where the velocity ui and the

kinematic pressure p are decoml)osed into the ensemble mean and fluctuating parts:

'.i = oi + u'i, p = p + p'. (1)

In homogeneous conditions, the velocity gradients O'iLi/OX j are independent of position.

These gradients are also assumed to be independent of the time. The Reynolds stress tensor

'dl' is a solution of the time evolution equationrij _ lit j

(_11 j O{i i

";-ij -_ -ria. Oxa. rik _ + dPiJ _'.t -- 2[_m({mkJ TM + e:mkirjk), (2)

which is valid in an arbitrary noninertial reference frame that can undergo a. rotation with

angular velocity fL,_ relative to an inertial frame. In (2), eijk is the permutation tensor and

\ O.rj + O*i]'
(0,,:o,,;)

C.ij = 21' \_/ , (3)

are the pressure-strain correlation and the dissipation rate tensors (where v is the kinematic

viscosity), respectively.
1 i i

With the turbulent, kinetic energy K = 7uiui, the scalar turbulent dissipation rate
1_

-- 7_ii, and the Reynolds stress anisotropy tensor

r C 1
bi5 = 21£ -- -_(_ij, (4)

the term _ij is modeled in the commonly used second-order closure models in the general
for Ill 2 as

6,1T"_ " ' CaL (bike-kj + bih.bkj 2 qdPiJ = --_'( (7° + 'l e ] bij + C2I'_,bij + " q' -' -- _b,,zn,-nm6ij)

-- 64h (bik_i kj - B"_kbt.j) + C4Kfl,_ (b_kemkj -- emik bkj)

+ (._: il_bki. -- Jb,_,_b,zm6ij ,

(5)

Above, the strain rate ,q'ij and rotation rate I'l/'/j tensors are defined as

_q'ij = _ _kOg'J + OJ:i / ' l'_';'j = _ _kO"CJ OJ:i ] '
(6)



and 7' = -rij,g'ij = -2Kbij,_'ij is the turbulence production. Tile coetticienls ('(1), ('_, and

(72 - (:5 can, in general, t)(' functions of the invariants formed on bij, ,qij, and I_I'i;. gqualion

(5) can t)e shown to 1)e l.he most general form for _i.i- For example, the pressure-sl.rain

model of Speziale, Sarkar and (la.tski 2 (SSG) gives the following coefficients:

(7'o :1.4, C_ 1.8, C = (' = = = 4.2. (7)2 0.36, 3 1.25, (74 0.4, ('

Tile substitution of (5) into (2) yields the following general evolution equation for the

Reynolds stress anisotropy tensor hi j, written in matrix form and in nondimensionalized

variables

d 1
--b - (8)
dl " g q

where

+ _o4(b2-{{b2}I)-a,S*-L ".

S* =S/{_}, W'=W/v_S2}. L*=L/_{{S2}, (.9)

The lensor |'{'i.i a('t'ounts for noninerlial effects

li'i.i = |'|"i.i -- (:w_,,, t:,,_ii,

where (',,, = (-('4 - 4)/(('4 - 2). The following definitions are used for the coef[icienl.s:

L_ (L(,, ) r' Lc.,_ 1g- \2 _ + 1 --_. +,?_ , ,

10)

l J)

/.I \

The tensor L Call generally contain the additional turbulence anisotropic effects, and the

scalar coefficients oi may generally be functions of the invariants 71and q. In the current

context, L is taken simply as d to represent the effects of the dissipation rate anisol.rol)y,

with the dissipation rate a.nisotropy tensor defined as

di; - c-i.i 1 ¢5ij" (14)
• "2_. 3

Equal.ion (8) is equivalent, io (2), but must be supplemented with an equation for the tur-

bulenl kinetic energy K

and for closure, an equation for l.lie turbulent dissipation ra.le

e (, e {16)

where (7¢1 and ('_-2 are closure constants.



III. SOLUTION OF REYNOLDS STRESS EQUATION

A. Equivalent Scalar Representation

The tensor relation (8) governing the evolution of the stress anisotropy cannot be manip-

ulated further because it involves matrix products and their transpose. Even with lineariza-

tion (a4 = 0), the terms that factor b cannot all be grouped to allow for the integration of

the system of ordinary differential equations. The following technique, however, transforms

the tensor relation into an equivalent system of scalar ordinary differential equations, which

in turn can be solved.

With the evolution of the anisotropy tensor b governed by equation (8), the tensor b can

be assumed to be dependent only oi1 tile tensors S* and W*, as well as on scalar quantities

such as t*, 71, and (. It call be shown 5 in this case that tbr two-dimensional flows tile exact

repr_:sentation tor the tensor b is given by

- w's')+ )b = {bS*}S* + {W.2 } - I . (17)

Equation (17) thus shows that if the three scalar invariants {bS*}, {bW*S*}, and {bS *2}

can be determined independently of (17), then a knowledge of these scalar functions is

equivalent to knowing b. In addition, the representatioll (l 7) can be used to construct (see

Al)pendix A) the nonlinear term in (8),

{bW.S.}{bS.2 }b 2- " {b2}I = 2{bS*}{bS*2}S" + 2 {W.2 } (S'W* - W'S*) (18)

{bW*S'}2 ) (S *'_ _I)+ {bS*}2-2 -_-_5_ 6{bS'2} 2 - ,

which clearly shows the same tensor function representation as in (1 7), as well as a. (lepen-

dency on the same three scalar invaria.nts. Independent of the representations shown in (17)

and (18), equations for the three scalar invariants {bS*}, {bW*S*}, and {bS .2} can be

forlned (see Appendix B) from the Reynolds stress anisotropy evolution equation given in

(8). For simplicity, the following variables are introduced

B, = {bS'}, = {bW*S'}, = (19)

and the representation in (17) is rewritten as

b= B1S* - _22(S*W* - W*S*) +6B:_ (S*2-1I) , (20)

where

"R 2 __
U {W
,1: {s*2} "

The evolution equation (8) is, therefore, equivalent to the system of ordinary differential

scalar equations in the scalar invariants {bS*}, {bW*S*}, and {bS .2} that is obtained as

shown in Appendix B (equation (B5)),

4



q 71

B2 = -"2TC2B1 + (2aB1 - 3 )B2 + 2a_4B2Bs - 1,2, (21)
71 71

__ , (/,1 R2 - (t4 n2 ,/_:3 = --1(1,3/_1-Jr-(_,@B1 /_)g3-t- (_/-_4t_2 -J-- --U 3 L3,

• q °11 3717-2v 2 "-'2 zl ,

where tile tensor L appears through tile invariants

L, = {O'S'}, = {L'W'S'}, = ('_,2)

E(luation (21) is a system of three algebraic ordinary differential equations in the three

unknowns BI. /35, and H:_, which is quadratic even if a4 -¢ 0 because g del)ends on HI.

1
-- 2_qBl + ;'I, (2:{)

g

with ct = ('_/2+1 and ,4 = ('°/2- 1. Note tha! the degenerate case of q = 0 is not considered

because either the al)sence o[" lnean velocity gradients o1" the absence of a turl)ulence [ield

would I)e implied. Of course, no such restrictions apply to (, so the case of (" = 0 is I1Oi

precluded.

The dynami(' systenl (21) is sul)jected lo the initial conditions

B,,o = {b0S*}. B2.o = {b0W*S*}, t3s.o = {b0S'_}. (21)

where b0 is a given initial anisolrol)y.

B. Solution of Reynolds Stress Equation

The svsl.em of scalar ordinary differential equations (21) with the representation in

(20), which is equivalent t.o the original tensor ew)lution equation for the Revnol(ls stress

a.nisotrot)y (8), has a. significant advantage in that it. is much more tractable and better suited

for analysis than the original tensor equation. Any expression for the extra anisot ropy tensor

L can be provided which involves the stress anisotropy tensor to any degree of COml)h'xity.

It then suflqces to study the resulting dynamical syst.em (21) to have a complete description

of the evolution of the Reynolds stress anisotropy tensor (8). In the case of pressure-strain

rate models that are only linear in the Reynolds stress anisotrol)y so that 04 = 0 (compare

(5) with Ca = 0) and for which no additional anisotropies are included L = 0, an explicil

solution of the system of ordinary differential equations (21) can be obtained. The solu-

tion procedure for the resulting differential system is not straightforward, and the major

steps of ils derivation are given in Appendix (I. The final expression for the Reynolds stress

anisotropy tensor, which is the solution of the modeled evolution equation (8) with a4 = 0

and L = 0, is rather compact and involves ratios of characteristic functions _i:

5



-- (t2T_2 [1 /:/ _1(/*) 1B2(t*) L ,t(t.),2(t.)
1

+ _2(t.---_ B2,o, (25)

03[ ,/_ kI/l(_* ) 1 ] 1B:,(_*) = U_ 1 ,/(t*) q,2(t*) ,1,_(t*) + q,_(t*--_B3`°"

The characteristic functions _i are the fundamental sohltions of a quadratic nonlinear system

of two. ordinary differential equations (see Appendix C) and are related by _2 = _1 and

_3 = _2,

II/l([* ) Ix" [ 3 !(:"\rt* + l/(H -}- H°)]= _,'=l tz,,,,\,

¢2([*) " a ,\,,"= h _,-=l ll,-e , (26)

*:_(t*) = K :_ \ ",_,-=1 tl,'k, "_' _t

where

,)

H= 24 ,
H ° = 4a(a2 B2.o - aaB3,0),

t',. = [.\_ - 2c_Bl,o- (H + H°)](Ap - Aq),

P' = (/_3 -- /_2)/,_1 "}-(-_1 -- "_3)//_2 "{- (/_2 -- -_1)/-_3,

(27)

(2s)

(29)

(3o)

and K = [(A2-AI)(A3-Ai)(Aa-A2)] -l. In (29), the indices p and q are such that e_,q = -1.

Finally, the parameters A_ are the eigenvalues that are obtained as roots of the following

third-order characteristic polynomial equation:

A3- 2,\2-(H + 2oral) .X + _H =0.

q q
(31)

In (25), the relative strain parameter depends on the time 7/ = r/(F), and its evolution is

governed by an additional equation. However, in the derivation of the explicit solution of the

system of ordinary differential equations (21), the relative strain parameter r; was assumed

not to vary in time, iI _ O. (See Appendix C.)

IV. ANALYSIS OF DYNAMICAL BEHAVIOR

A. Transient Behavior

Equations (20) and (25) completely determine the solution of the modeled evolution

equation for the Reynolds stress anisotropy tensor for all planar honlogeneous tnrbulent



flows. Any initial stressanisotropy (:anbe taken into account. The scalars Bi of the ex-

pansion in (20) involve ratios of the chararterislic functions _i, which are expressed as the

sum of three exponential functions. Because the arguments of the exponentials are the same

for all characteristic fulicl_ions and are given a.s the roots of the characteristic 1)olynomial

(31), t.he dynamical behavior of the stress anisotropies will essentially I)e determined I)y the

location of these roots in the complex plane. If -Xi and ,--X2are defined as

( ( '+)1 1 ,d2"_ 1,3 H - o(I 1 - - (:{2)

then 1.he (liscriminanl of the third-degree polynomial equa.tion (31) is given by

, 2 (a3)

The discrinlinant depends on the paramei.ers tl and ,/only and can 1)e rewritten a.s

1[ /-]4t]" - "712 ]A---2- 7 It--7+(o2a { + lOa,,,It-2II 2) +(n + 2_*a,):' . (34),q2

Because H is a fulwtion of R, (see equa.lion (27)), the value of the discrilninanl, will be

essentially determined by 7_, and q. Figure 1 shows the evolution of t.he discriminanl A as a

funclion of q, for different, values of the paramet.er TO. Three cases must. be distinguished:

IRt= 1

o

IRI = R_. ~ 0.271 i

IRI = 0.125

IRI =0 i
L

5 10 15

rl
FIG. 1. Evolution of discriminant of cubic root. equation a.s function of q for different values of

parameter _. as labeled.

(a) ._X< 0

The three roots of t.he characteristic t)olynomial are real, and the characterist.ic functions

_i are combinations of real exponentials. Because a propert.y of the roots of a third-degree

polynomial is t.hal. )_1 + A2 + _\3 = .d/q is always positive, a.t least one root is positive.



(b) A>O

Two roots are complex conjugates,for example, )% = _3 = d + i,J and A1 = A.

characteristic functions can then be expressed as

k_l(t*) = K'[e "\t" + edt'(.fll coswt* -k-f12sinwt*) +,f13] ,

The

_I.12([* ) = I_'[._¢: At" -}- ¢'dt*(f21COS_.,'t* -'}-f22 Sirlu.,'_*)] , (35)

where K' and fii are constants. Because a property of the roots of a third-degree polynomial

is that A(d 2 + _,2) = _H3/7 I and A + 2d = 3/q always, A will be positive when H < 0.

When H > 0, A < 0 and, thus, 2d =/71/_ I - A > 0. Therefore, in this case also, one root will

have a positive real part..

(c) A= 0

The roots are all real, and two of them are equal, for example, $2 = A:_ = A.

case, tq = 0, and the third root. A1 has no effect on the characteristic functions.

2A + AI = i'4/q > 0, at least one root will be positive.

In this

Because

In summary, at least one root will always have a positive real part; therefore, the charac-

teristic functions _i will always grow exponentially. In the case of _ > 0, the characteristic

functions grow with superimposed (damped) oscillations of period T = 27r/,_,. Three distinct

cases can be identified on Figure 1. For mean flow fields such that H > 0, that is.

with

0,.3

re, = vq. 

(e.g., IR.I < 0.271 for the SSG pressure-strain correlation coefficients), the discriminant A

is always negative, and the three roots will always be real. For values of H such that

-2oa_ < H < 0, that is,

(e.g., 0.271 < 1_1 < 1.231 for the SSG), where

= -- a2 + a,,1,
a2

the roots will have a different nature depending on the magnitude of r/, and the evolution

of the stress anisotropy will contain an oscillatory component for sufficiently small values of

q. Finally, for values H < -2aal, that is,



the discriminan| _ is alwayspositive, and the evolution of the stressanisolrol)ycomponents
will contain dampedoscillations.

The caseof a vanishing root is of particular interest. Because)_1)_2A3 = -Hd/q is

always verified, one of tile roots is zero (e.g.,)_2) if either H = 0 or 1/q = 0. In the case

H = 0 (and, thus, R, = 7¢1), A < 0 always, and the nonzero roots are real and given by

._1.3 = .;':7_/(911)-1"- V/[,:3{/(_,,])]2 --[-20'11- In the case 1/'1 = O, _ = -(tt + 2ao,)3/27. When

H > -2aal (i.e., T¢ < 7¢2), the roots are all real and are given by the same relations as

for the case H = 0. When H < -2aal (i.e., g > g2), A > 0, and the roots are purely

imaginary. The characteristic functions _2 and qJa have a purely oscillatory behavior: while

_1 is increasing as J @2. The period of the oscillation is 7' = 2rr/_.', wilh _.,2 = -(H +2_al).

B. Asymptotic States

It has been shown in the previous section thai lhe chara.clerislic functions _i are always

increasing, except, when 1/, I = 0. For 1/, I # O, when the effect of the initial conditions has

vanished, l,he exponential l,hat corresponds to the root with the largesl real pa.rl becomes

dominanl, and the ratios of the characteristic functions converge to l he values

_._(t') _

"

q*l(/*)] = lira _l(tx)- 1

q_2(t')] _. "-'_ qJ2(l') ,\,_

where

(36)

A._. = max R,(£.).
r = 1,2.3

The asymptotic values of the coefficients Bi are given I)v

tlF _ 1( A _A_.),

- 12a )_, 'i,-_,)'

a3 , 1 .d
B:'_' -- 7{1 ),

(37)

1 -l1

,/2 O.

+9, 2H, for -Rum<R <R.:i,,,,

otherwise

(3s)

where q,_. is the equilibrium value achieved by the relative strain t)aranleter. II can be shown

that for any planar holnogeneous flow descril>ed by the Reynolds stress mo<lel e<lual.ioll (2),

a. unique relationship holds between the equilil)rium vahle for the production-to-dissipation

ratio (E)._., the equilibrium relative strain parameter q._., and the rotation ral.e R.:



whereg,_:, = (_(_)oo + _)-] and

1 /1 2 ( "_P -1

J'_lim _ _22 v5a3-al-_al--}-'_al \$-/|--)oo "
(39)

The equilibrium value of the production-to-dissipation ratio (E)_ is determined bv_ the K

and (evolution equations. For the standard approach, where equations (15) and (16) are

used, this value is given by

P) C_2 - 170o-(:°--7 i (40)

For values of the parameter 7_ outside the range [--7_:im, R:im], the asymptotic value of the

relative strain parameter is 1/_1_ = 0, and the representation coefficients given by (37) are

BF = = = (41)

However, as shown before, for values of 1/71 = O, the solution reaches a limit cycle for the

anisotropy, and no asymptotic state exists. The solution (41) is, therefore, spurious because

the real behavior of the anisotropy is purely oscillatory in time.

In a previous study, _ an expression equivalent to (37) was obtained from a direct analysis

of the asymptotic state of (8). Written in the present formalism, the asymptotic value for

the representation coefficient i4i':' was obtained from the roots of a cubic polyuomiat in B_,

/J'2 ) 34a2(B{)_-4Oq(BT') 2 + \7F'--7'- H-2cm_ B_:'+ 11(ll =0, (42)

which led to the prol)lem of choosing one of the three roots so that the valne of B_' was

retained. This question could not be rigorously answered, and the selection of the proper

root was done on the basis of continuity argumentsf With the present dynamic approach of

the Reynolds stress equation, the proper choice for the roots in (42) is obvious and is based

on the limit of a dynamical process. Clearly, the correct root is the one thai controls the

asymptotic behavior of the system (i.e., A,_,). In terms of B_', B_ inust be taken as the

root in (42) that has the low_st real parl.

In general, planar homogeneous flows can be described by the expression r

-- [(D _- _a_,)(_i16j2 _- (D -- ¢_')6i2(_jl] , (43)
Oxj 2

which yields

7?2 1 )2 (2 1= _(Dr , =_[(_-2c_fl)r] 2, (44)

where D/2 is the strain rate and w/2 is the rotation rate of the flow. As shown in Table I, a

wide class of homogeneous flows, both with and without system rotation, can be described

in terms of _,

10



TABLE I. (!haracterization of Conunon Honmgeneous Turbulent Flows.

Flow

Plane shear

Plane strain

llyperbolic '*

Elliptic

Rotating plane shear

1 0 1 -1.19

0 0 0 0.09

< 1 0 < 1 > -1.19

> 1 0 > 1 < -1.19

1 0.25, 0.50 0.125, 1.25 b 0 .07, -1.91

"See l,eliclll.er and Benoil7 for a description of this class of flows.

bThese values are del)endent on the pressure-strain rate model used (SS(; model in this case).

g2 = "' - 2c_ (1.5)

As discussed above, the vahle A = 0 divides the plane (R.. q) into l wo regions in which

the Reynolds slress components have distincliv different behaviors in lime. These regions

are illustrated in Figure 2; the solid lines are del.ermined by the locus of points (R. q) such

lhat A = 0. For realizal)ility (q > 0), only the positive reel of l/q is 1)loll.cal. Figure 2

1.0

0.8

0.6

v--

0.4

0.2

f REGION II

t Damped oscillations i

r 1 , r_ T r _mll • _ r 7 - r * T , r " r t

0.0

REGION 1

Exponential convergence
REGION II

Damped oscillations

'tl

' _ / \ ',

,"-R -R, R, \ ' i
1 't "

-2.0 -I.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

R

FIG. 2. Map of time-evolution types for Reynolds stress tensor in (_, 1/q) plane. Boundary

= 0,--; locus of equilibriuni points 1/q<, as function of _v,---; plane shear, @: plane

strain, O; rotating plane shear _ = 0.25 and (}.50,/_ and V, respectively.

also shows the locus of asymptotic solui.ions 1/q,_. as a function of 7¢, as defined I)3' (38).

(Note the dashe(l line in Fig. 2.) The syml)ols corresl)ond to several planar honlogelleOUS

flows. (See Table 1.) \\:hen the sl,andard equal, ion (16) for lhe dissipation rate z is used, the

evohlt.ion equation for the relative strain paralnel.er q

11



d

dt, q = 2r/BI(C..1 - 1) + (C_2 - 1) (46)

is solved in conjunction with the evolution of the coefficients Bi. Because for a given planar

homogeneous flow the value of the parameter 7_ is fixed, the system will evolve along vertical

lines in Figure 2. For values of (7¢,_/) situated in region I of Figure 2, the roots of the

characteristic polynomial are real, and the Reynolds stress components converge to the

asymptotic solution as ratios of real exponentials. In terms of dynamical systems, tile

asymptotic solution is a sink. For example, planar strain flows and rotating shear flows with

_/D = 0.25 will always have an evolution that is characterized by growing exponentials,

for any initial condition on the anisotropy b0 or on the relative strain parameter 710. Points

iLLregion II have a time evolution with a damped oscillatory character, and the asymptotic

state is a spiral sink. Tile rate of damping of the oscillations is proportional to 1/71, with no

damping at all when 1/71 = 0. For example, a shear flow with high rotation (f_/D = 0.5)

is such that 7_ > 7-¢2, and tile stress components will evolve to their asymptotic value with

damped oscillations. Note that for the homogeneous shear case ('R.L < TO. < 7_2), the two

types of evolution can be exl)erienced depending on the value of I/. As already mentioned,

for values 7"¢ > 7¢lim, tile asylnptotic solution for the relative strain parameter is 1/71.>:_= O,

and the solution is purely oscillatory, i.e., a limit cycle is reached.

V. ILLUSTRATIONS

First, consider a sheared flow (R. = 1) in which the t.url)ulent field is subjected to the

following initial conditions:

qo = 3.;_8, bLl.O = hi2.0 = b22.0 = 0.

Figure 3 shows the evolution in time of the stress anisotropies predicted by the differential

equation (8) and by the presen! explicit time solution. Clearly, the anisotropies given bv

the present explicit solution are ahnost indistinguishable from those given by the differential

equation; the difference is attributed to the assumption that dTi/dt* _ 0, which is used

in deriving the explicit solution. (See Appendix C.) From the standpoint of a dynamical

system, it is more interesting to consider the evolution of the system variables 7/ and bij in

the phase plane, as shown in Figure 4.

In the case of aLL initial anisotropy, for instance,

710 = 3.38, bll,O = --0.1, b12,0 = 0.2, b22,o = 0.2,

the present explicit nonequilibrium solution leads to stress evolutions that are almost indis-

tinguishable from those obtained with the differential Reynolds stress equation, as shown in

Figure 5. Moreover, the explicit nonequilibrinm solution is remarkably close to the differen-

tim stress equation over a wide range of initial values 7/0 for the relative strain parameter,

as illustrated in Figure 6, which shows the initial value of 7/ varying from 1 to 1.00, with

isotropic initial conditions (bii,0 = 0).

For values of the parameter 7¢ outside the range [--TCli,mTClim], the asymptotic value

for l/q is shown to be 0 (see equation (38)), and the solution reaches a limit cycle for the

12
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FIG. 4. Phase plane evolution of stress anisotropies for homogeneous shear case. Inilial con-

ditions are 7/o = 3.3'" _;bll.0 = hi2.0 = b22,0 = 0. Present nonequilibrium solution, --: differential

Reynolds stress equation, -...: asymptotic solution, o.

anisotropy. Figure 7 shows the time evohttion of the stress anisotropy comt)onents in the

case of a rotation-dominated flow for which _,,/D -- 2 (and, thus. _, = 2). which ix well

outside the range [--_'_liin,'_lim]. The discriminant A is, therefore, always positive. (See

Figure 2.) The initial stress field is taken to be isotropic, and the initial value of the relative

strain i)arameter is arbitrarily set to a high value (_10 = 100) in order to show clearly the

characteristic oscillalion of the dynamic system. From its initial bounded value, the relatiw "

strain parameter _1grows unboundedlv (so that 1/7 I --_ 0) with superimposed oscillations, as

illustrated in Figure 8.

In Figures 7 and 8, clearly lhe present nouequilibrium explicit solution is extremely

accurate in capturing the initial phase of the evolution of the anisotropy. The period of the

oscillalions is also captured well by the present nonequilibrium solution. When 1/1! = 0, the
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FIG. 6. Phase plane evolution of stress anisotropies for homogeneous shear case. Initial con-

ditions are bl_,0 = b120 = b22,o = 0, and different, values for q0 are used, as labeled. Present

nonequilibrium solution, --; differential Reynolds stress equation, .---; asymptotic solution, o.

solution is purely oscillatory, as discussed before. Because 7/ starts from a bounded value, the

oscillations start with a damping component, and their amplitude first decreases in time.

Although the frequency of the oscillations is captured well, the amplitude clearly is not

correctly represented by the present nonequilibrium solution for larger times. This finding is

attributed to the hypothesis dTi/dt* ,,_ 0 that is used in the solution procedure. As the initial

condition _/0 takes lower values, the initial damping of the oscillations is stronger, so that as

the limit cycle is approached all oscillations may be nearly killed for the differential stress

evolution; whereas the oscillations for the present explicit solution have not been damped

fast enough, as illustrated in Figure 9, where the initial q value is set to a low value (_10 = 2).

As q grows in time, the oscillations of the nonequilibrium solution are not. damped at the

correct rate, and the remaining long-term amplitude of the oscillations is not correct.
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FIG. 7. Time evolution of stress anisotropies for rotation-dominated flow (,_/D = 2). The

initial conditions are T/0 = 100; bll.0 = bl2,0 = b22,o = 0. Present nonequilibrium solution. I;

differential Reynolds stress equatioll.. ....
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FIG. ,_. Phase plane evolution of stress a nisotropies for rotation-dominated ttow (,.'/D = 2).

Initial conditions are i10 = 100; bll,0 = hi,2.0 = b22,0 = 0. Present nonequilibrium solution, _:

differential Reynolds stress equation,. ....

VI. CONCLUSIONS

A general l)rocedure has been developed that allows for the investigation of the tim('

evolution of the Ileynolds stress anisotropy comt)onents in all 1)lanar homogeneous l.url)ulent

flows. The proce<lure lakes th<' evolution equation for the Reynolds stress anisotrol)y tensor

and replaces i(. with an equivalent system of scalar ordinary differential e(luations. This

equivaleill svsl.elll can then t)e used for assessing the dynamical l)ehavior of a variely of

tm'bulen('e closure models. This includes pressure-strain rate models which are quadratic

(or higher) in the anisotropy tensor and in which other anisoiropi(" effe('ls, such as (tissil)alion

rate anisotropy, can I)e taken into account. For the case of linear l)ressure-strain rate models.

the systeni of ordinary differenl, ial equations can t)e analytically integrated when the relative
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FIG. 9. Phase plane evolution of stress anisotropies for rotation-dominated flow (_/D = 2).

Initial conditions are Z/o = 2; b11,o = bl2,o = b2'2,o = O. Present nonequilibrium solution, --;

differential Reynolds stress equation,. ....

strain parameter is assumed t.o vary slowly, and an explicit expression can be found for tile

time evolution of the anisol.ropy of tile Reynolds stress tensor ill all planar homogeneous flow.

The present nonequilibrium solution is extremely effective at capturing the initial behavior

of the modeled Reynolds stress evolution, as well as the equilibrium states. In most cases,

the present, explicit nonequilibrium solution predicts stress anisotropies that are quite close

to those given by the modeled differential Reynolds stress anisotropy evolution equation

for all times; the sm_ll differences are attributed to the assumi)tion of slow variation of

the relative strain parameter used in obtaining the explicit expression of the time evolution

of the modeled stress anisotropies. It has also been shown that the present, nonequilibrium

solution is able to predict all the dynamic features of the Revnohls stress evolution, including

the oscillatory nature of the stress anisotropy for elliptic [tows.
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1{b2}IAPPENDIX A: REPRESENTATION OF b2- 5

(!onsider a symmetric, traceless tensor b for which tile elements in any rectangular

coordinate system are functions of the elements of two independent traceless tensors S*

(symnletric) and W* (antisyunnetric)in the sa.111e coordinate svsl.el]l, which is written as

b .i= W;t).

The forms of these functional relationships also must be independent of the particular co-

ordinate system in which they are expressed; that is, the relation between b, S*, and W* is

isotropic.S

For two-dimensional mean flows, S* has one vanishing eigenvalue, and in the principal

coordinate system of S*. the vorticity vector is aligned with the eigenvect.or of S* that

correspoIlds to the vanishing eigenvalue. If the tensor b* is also assumed 1o have one

eigenvector aligned with the eigenvector of S" that corresponds to the vanishing eigenvalue,

then the tensor b can |)e ret)resented ill l.ernls of the tensors S* and W* and the scalar

invaria,,ts {bS*}, {bW'S'}, and {bS*2}. as _

{bW*S*} W'S* 6{bS'2}(S "2 _I). (Al)b= {bS*}S*+ {W.2 } (S'W*- )+ -.

T'he quadratic t.erm b 2 - -l {b2}I can also be rel)resented in l.erms of the tensors S* and W"3

and the scala," i,,variants {bS*}, {bW'S*}, and {bS*2}.

If in expression (AI) lhe symmetric, traceless lensor b is repla('e(l by b 2 1 2.... - ._{b }I, then

the following equation is obtained:

b _ l{b2}I = {b'2S * S* {b_W*S*} W'S"
} + (s'w*- ) (Ae)

l b_ 1 I
+6({b2S'2}-_{ })(S'2- 3 ).

Now, the scalar i,,varianls {b2S*}, {b2W*S*}, and {b2S "2} in (A2)must be exl)ressed in

terms of the scalar invariants {bS*}, {bW*S*}, and {bS'2}.

Vor conciseness, relal.ion (A l) can be rewritten as

b = __, aiTi, (A:{)

i=l

where the scalar coefficients ai are

al = {bS'}, a2 = {bW*S*}/{W*2}, a:, = 6{bS'2},

and lhe tensors Ti are given 1)5'

T1 = S', T2 = S'W* - W'S*, T:, = S .2 - lI.
3

Therefore.
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{b2S"} = {b2Tl}, 1{b2T2} '{b W-S-} =
!

{b2S "2} _ ¼{b 2} = {b2T3},

and if (A3) is inserted into tile above expressions, then

3 3

{b2Ti} = E _ aja_.{TjTkTi}, (i = 1,2,3). (14)
j=l k=l

Finally, the 27 invariants {TjTkTI}, (i,j,k = 1,2,3) must be evaluated. As a result of

symmetry properties ((j, k, i) = (i,j, k) = (k, i,j)), only 11 invariants must be computed:

(i,j,l,:) = (1,1,1), (1,1,2), (1,1,3), (1,2,2), (1,2,3), (1,:3,2), (1,3,3), (2,2,2), (2,2,3),

(2,3,3), and (3, 3,3). With the generalized version of the Cayley-Hamilton theorem, 9 the

only resulting nonzero invariants are

1 {T2T3} = 1 1
{T_T3} = _, -_i{W'2}, {T._} =-]-_,

together with the invariants that. result from the cyclic pemmtations of the indices. There-

fore, the relations

l

{b2S "} = _a,a3 = 2{bS*}{bS*2},

1

{b_W*S "} = _a.2_,:_{W "2} = .{bW S }{bS "_} (15)

• 1 {bS.}2 1 {bW*S*} 2

lead to the desired expression of the quadratic term in (18).
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APPENDIX B: DERIVATION OF {bS'}, {bW*S*}, AND {bS"2} EQUATIONS

Starting from the tensor evolution equation for the t_eynoldsstress anisotrol)y (8), a
systemof three scalarordinary differential equations in the three scalar unknowns {bS'},
{bW*S*}, and {bS .2} can be derived.

By multiplying relation (8) by S*, taking tile trace of the equation, and using the results

of Appendix A to express {b2S "} in terms of {bS'} and {bS'2}, the following equation is

obtained:

dbs. 1 {bS. } , .2-- ---- ,) , z- - 2,,_{bS } +.,,_{bW S } (_){at" } .q,I

+2a4 {bS'}{bS*2} -a,- {L'S*}.
I/

Similarly, multiplying equation (8) bv either W'S* or S .2 and taking the trace of the ('qua-

tion leads to the following equations, respectively:

_ 2_,4{bW.S.}{bS.2}_{L.W.S.}, (B2){_Wsdb * *}- g'll {bW'S*}-a2 {bS'}+ ,_-

and

db 1
{bS"2}- + 2{_s 2"}- v,/ '

"., 'P,bW.S.}2 _ ", {bS._}_- {L-S_-}.
+ 3q ¢-2 • */

In o])t.aining these two equations, the following relations are used:

1 1<.e{bS'},{bS"_}= 7,{bS_}. 2{bW'_S *}+ {bW'S'W'}

which are consequences of the (layley-Hamillon theorem. _ Because the velocity gradients

have been assumed independent of time, the following can easily be w'rified:

db .
{_Ts } = _{bS*},

db
W'S" _

/

{U: } = .._ {bW'S*} (m)
db 2.-
,57s }= ,j_:{bS'_}.

Equations (B1), (B2), and (B3) lead, therefore, to the desired system of scalar ordinary

differential equations for the invariants {bS*}, {bW*S'}, an(l {bS*2},
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d

dr. {bW'S*} -

1
_ ---{bS*} - 2a_{bS*_}+ 2a_{bW*S*}

9q

--¢'_1 -- {L'S*} + --*{bS*}{bS*2},
71

- -l{bw*S*} - a2 (-_ {bS "} - {L*W*S*}
971 q

+ bW'S*}{bS*2},
'q

a, {bS, }--1--{bS'2}gq - a3{bS*}-{L'S "2}+

+(_4 7]2 r_-.TT,,r',, _2
_" _ a4__{bS.2}2.

(B5)
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APPENDIX C: SOLUTION OF ANISOTROPY EVOLUTION EQUATION

The change of variables

(13 _ 02"_ 2
B2 = --_ O,

a2 H
(/3 ,

(('1

(c2

((13

transforms system (21) into tile quadratic system of ordinary differenlial equations

= - O + H _ Ill' ,

_"' = 2c_/", _/"+ 0 - al,

C4

('5

( '(i

whel'e

,)

H _a_ ) 2,-_2---- -- _'(/2 Icy o

System ((_4) ((16) is subjected to the following initial conditions:

'/'O ---- I_"'(0) ---- /_1,0,

Oo = 0(0) = 2a2H2,0 -- 2<,:_Ba,o, (('7)

In this system, the evolution of the two variat)les ,/, and o is independent of the evolution

of the variat)le (. 'Therefore, the quadratic systelll of ordinary differential equations

= -'0 + Hw + 2a_',0, (('8)
7/

_.' - _.' + O + '2a_ ''2 - a_, (('9)
I1

can t)e solved, and the evolution of ( is deduced t)y integrat.ii,g ((:4).

(,(t') = (0_xp j,,'" 2a,;,(._)
3

_/(._)
d,_. ((!10)

By integrating ((18), the evolution of 0 can be given as a. function of t,..",,

H{f[ [2_,,;.(.,)-,V,_(.,)]d.,['* '- " '"= ,,.',(r)_-.fo [2°_'(_)-'V"('_)ld%lr + Ooe.lo [2,,_,(._)-,_/,,(._)1,_._ (CI 1 )o(r)
Jo
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By introducing the transformation

d,(/*)- 2c_ _(t*) ,l(t*) ' (C12)

equation (Cll) can now be rewritten as

[ /0H 1 w(0)(H + 2_0o) + flH (C13)
_(t*)- 2_ + 2_(t*) ,(._) J'

and equation (C9) can be written in terms of _: as the following integro-differential equation:

£ = H I + (H + 2aal - 3. )..,- 3H --d.s-w(O)(H + 2aOo),Tl(s) (C14)

where ,_(0) can take any nonzero value and &(0) = -,_(0)(2o'_/,0 -3/qo) = -w(0)(2oB_,0 -

fl/Tio ), with 7/o = q(0) as the initial value of the relative strain parameter. Equation (C14)

is integrated with the tbllowing transformation

011= f _/7/,

012 = +l = _/7/,

"4 = +3 = _/'1 + 2&(1/)'/) + _(l/,/).

The functions 01i are the solution of

+1 = 012,

+2 = 01_, ((I15)

+3-/41_ I- 01, + (H + 2o_al "_) 012 + '-11(fl-2'))013-Tl°012(O)(H+H°)'TI

where the initial conditions are given by 011(0) = 0, 012(0) # 0, and 013(0) = -012(O)(2oB1.0-

fl/,Io - qo/,lo); and H ° = 2O_0o = 4o(a2B2,o - a3B3,o).

In the general case for which the relative strain parameter varies in time. system (C15)

is a linear system of ordinary differential equations with variable coefficients. In the case of

slow variations of 7l, the a l)I)roxinmtions

7"1 0,
7#

are valid, and the solution of the system

01,(t') = I¢

#
- _ 0 (C16)
71

of ordinary differential equations (C15) yields

3 it le.\_ c + u(H + H°)],

r=l

g

Z Art*

r----1

3

Z _ ,\rt*FlrAr C

r=l

(("17)
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whereK= _2(0)[(A2- ,\1 )()_-3- /\1)(_3- /_2)] -1 and

u- + +

(C18)

(C19)

In (C18), the indices p and q are chosen such that crp<l = -1. The ,\,. are eigenvalues that

are obtained as roots of the following third-order chara.cteristic polynomial:

Finally, in terms of lhe original variables [3i(l*) the explicit solution is

B_(t')- :_o dr-) q,_(t* '

(/2R,2 [ ,J'_ _.II1(1") I-]/2(0 )

132(1") -- 20 [1-- 'q(l*) ¢2(t*) qJ2(/*) _ _(0--_))/32.0 , ((_21)+ qJ.2(t*

,,:_r I ,,_ ¢1(1") _2(0)

B:,(t*) = (i,__ [ ,t(t*)'l'2(t*) *2(t*)

¢_(o)
+ -- B3.0.

_2(t*)

In ((!21), the initial condition qJ2(0) ¢ 0 is arl)itrary, and its value can, therefore, 1)e taken

as _1'2(0) = 1.
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